 深圳为胜智控技术有限公司 —	

温控仪 T24/T240 MODBUS 调试及 PID 设置操作指南 ---V1.0

产品目录

弗	一早	Modbus 迪 信与奓剱��直	2
	1. 1	Modbus 通信功能	2
	1. 2 i	卖数据例子	2
	1.3	写数据例子	2
	1.4	显示参数 M odbus 对应地址	-4
	1.5	报警输出功能	5
第.	二章 F	PID 参数优化	6
	2. 1	当温度出现较大周期性波动时	6
	2. 2	减少上电后加热超调	6
	2. 3	当 3 次整定效果不好时,可调大或调小控制周期	7
	2. 5	升温段后产生较大超调	7
	2. 6	温升曲线和设定程序曲线不够贴合(*1)	7
第	三章	, 注意事项	8

第一章 Modbus 通信与参数配置

1.1 Modbus 通信功能

该功能涉及的相关参数

RS485 通信波特率: 0:1200 1:2400 2:4800 3:9600 4:19200 5:38400 温控器 modbus 站号: 范围 1~255;

modbus 参数的读写模式: 0:可读写; 1:只读;

支持 Modbus 功能码: 0x04 读任意地址数据, 0x06 修改单个地址数据, 0x10 修改多个地址的数据。

注:

- ① 所有数据收发都为有符号整数,需要根据参数的描述,将其缩小到对应小位数。
- ② 不同模式下的参数的 Modbus 地址中间会有间隔, 不是连续的, 间隔的地址不允许写。
- ③ 若输入错误数值进入变量,会有错误指令反馈。

1.2 读数据例子

对扩展板发送 HEX:

01 | 04 | 00 01 | 00 01 | 60 0A | 站号 | 功能码 | 寄存器首地址 | 读取寄存器个数 | CRC 校验码 |

该指令功能为: 读取 PV 实际温度值。

返回数据如下:

 01 | 04 | 02 | 00 FE | 38 B0 |

 站号 | 功能码 | 数据长度 | 寄存器数据内容 | CRC 校验 |

返回寄存器数据为有符号整数,由于 PV 参数为 1 位小数,即获取数据需要缩小 10 倍使用。返回数据为 00 FE 则测量温度为 25.4°C。

1.3 写数据例子

示例:修改单个 SV 参数

站号/ 功能码 /地址 H /地址 L/ 数据 H/数据 L/冗余校验码 H/冗余校验码 L

01 06 00 00 02 5A 08 91

将 SV 设定温度设置为 60.2°C----数据/10 为模拟量实际输出值

示例:修改多个参数

1.4 显示参数 Modbus 对应地址

简写	描述	modbus 地址	位数 bit	读写/只读
SV	设定温度	0	16	读写
PV	PV 实际测温		16	只读
输出状态	两个状态 0, 1	2	16	只读
报警状态	两个状态 0, 1	3	16	只读
Pb_P	比例	20	16	读写
ArSt	积分	21	16	读写
rAtE	微分	22	16	读写
SPuL	温度上限	23	16	读写
SPLL	温度下限	24	16	读写
C_M	温度控制模式, 范围 0~2	25	16	读写
Co 1	Co 1 手动模式的控制位, 范围 0~1		16	读写
Co2u	Co2u 控制模式 2: 开启加热的设定值		16	读写
Co2d	Co2d 控制模式 2: 关闭加热的设定值		16	读写
Alup	Alup 模拟量输入对应范围上限		16	读写
Aldo	Aldo模拟量输入对应范围下限		16	读写
Pldt	PID 控制周期 0.1~99.9 单位 S	33 16		读写
OSP	首次升温超调抑制参数 0~9999	35	16	读写
HC_o	HC_o 加热制冷模式,0 加热,1 制冷		16	读写
inpt	inpt 输入类型选择, 范围 0~15		16	读写
AL-I	报警 1 类型	61	16	读写
AL11	AL11 报警 1 参数 1		16	读写
AL12	报警 1 参数 2	63	16	读写
AHYS	报警滞后温度	64	16	读写
ATP1 报警 1 模式		65	16	读写

———— 深圳为胜智控技术有限公司 ————

bAud RS485 通信波特率		66	16	读写
mbA	温控器 modbus 站号	67	读写	
mbr	modbus 参数的读写模式: 0, 可读写 1, 只读	68	16	只读
AL-2	报警类型 2	70	16	读写
AL21	报警参数 2.1	71	16	读写
AL22	报警参数 2. 2	72	16	读写
ATP2	报警模式 2	73	16	读写
LbA. t	LBA 检测时间	74	16	读写
LbA. b	LBA 检测宽	75	16	读写
oUt	输出类型	76	16	读写
bt	蓝牙通信 0 无效 1 有效	77	16	读写
btcd	蓝牙配对密码	78	16	读写
tSH	变送输出上限	79	16	读写
tSL	变送输出下限	80	16	读写
Er. nu	传感器报警操作量	81	16	读写
dI-t	数字输入键 STOP、AL、RE、AT	82	16	读写
LoC	锁键设定	83	16	读写
Atun	0, 关闭自整定 1, 开启自整定	100	16	读写
Sped	自整 <mark>定速度(0[~]5)</mark>	101 16		读写
CAEt	校准方式	110	16	读写
b	偏差值 b	111	16	读写
k	斜率 K	112	16	读写
ONOF	多段程序控制位	150	16	读写
SEg	多段程序当前执行的段数	151	16	只读
Prgt	当前段已执行时间	152 16		只读
\$_n	多段程序使用的总段数	153	16	读写
P_on	重上电状态	154	16	读写
End	程序结束后动作	155 16		读写
oSSP	oSSP 超调抑制参数		16	读写

———— 深圳为胜智控技术有限公司 ————

t. typ	时间类型	157	16	读写
0	选择进入的段数,按》进入			
d. SEG	远洋近八时状效, 弦》 近八			
SP	段 O SP	159	16	读写
t	段 O time	160	16	读写
1	选择进入的段数,按》进入			
d. SEG	处拜近八的权数,按》近八			
SP	段 1 SP	161	16	读写
t	段1 time	162	16	读写
31	选择进入的段数,按》进入			
d. SEG	起汗近八则权效,按》近八			
SP	段 31 SP	221	16	读写
t 段31 time		222	16	读写

(*1:红色框线内 T240 型号特有)

注: ① 进行 PID 自整定时, SV 设定温度不能修改, 否则会自整定失败。

- ② 进行 PID 自整定时,比例,积分,微分,无法修改。
- ③ 启动 PID 自整定后,再给加热设备通电。防止未开始整定,温度已经开始提升。
- ④ 程序启动后是不能更改程序模式参数的。(*1)

1.5 报警输出功能

简述: 用于设定报警的触发条件和解除规则, 实现对报警流程的管控。

报警输出有2路的型号,每路独立动作,报警1在输入断线情况下会触发报警。

当前温度退出报警动作范围时,报警将自动解除,退出受报警滞后参数影响。

第二章 PID 参数优化

简述:本章聚焦 PID 参数优化,针对控温常见问题(如温度周期性波动、上电超调等),从参数微调、控制周期及自整定优化等方面,结合实例与原理,讲解让控温更精准稳定的实操方法,还拓展多段程序控温优化思路,解决曲线贴合等问题。

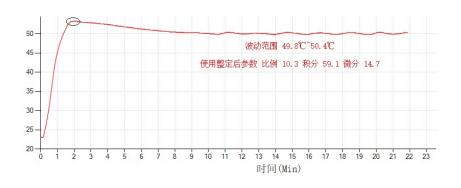
2.1 当温度出现较大周期性波动时

实例(控制对象热水壶,特点:功率大升温快,有4秒加热滞后时间)


整定结果:比例 40,积分 24,微分 6。

现象: 周期性出现温度超出 SV 值 ±1℃。

参数调整:比例 5, 积分 40, 微分 6, 调整后温度保持在 SV±0.5℃。


调整原理:比例值为加热力度, 当控制系统功率很大时, 比例值就不宜过大。

积分和微分值对加热趋势有预判,当控制系统加热滞后时间较长,该值就需要大。

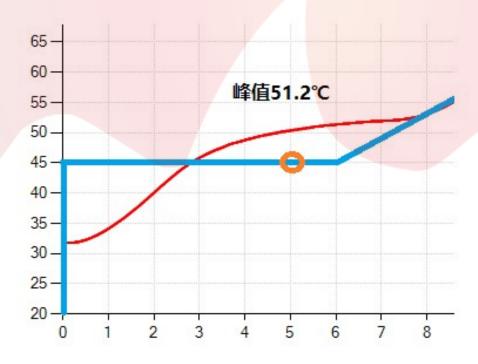
2.2 减少上电后加热超调

可以增大超调抑制参数的值,或者假如想要设定温度为 60° C,上电时可先设为 50° C,温度稳定后再上调 3° C,逐步靠近设定值 60° C。

2.3 当3次整定效果不好时,可调大或调小控制周期。

Pldt	PID 控制周期 0. 1~99. 9	单位 S 一位小数
------	---------------------	-----------

- 2.4 自整定时若发现温度上升缓慢,整定时间长,可适当提升整定速度再进行自整定。
- 2.5 升温段后产生较大超调。


Sped	自整定速度 0 [~] 5,	0~4逐渐加快,	5 为综合加速。	选定后,	再进行整定。
Spea	日登正述度∪つ,	0 4 逐渐加快,	5 乃际合加迷。	远正后,	冉进仃登疋。

多段程序控温效果优化(*1)

程序设置时可以延长橙色圈那一段的时间,让升温速度有足够时间减慢。

如果升温段后的一段不是恒温段,温升速度不会提前减速,造成较大超调,可在升温段后面加入恒温段,减缓升温速度。

自整定后程序会根据系统自动设置超调抑制参数,当该参数大于 350 时,设定的温升曲线速度较快的话也会造成较大超调。

- 2.6 温升曲线和设定程序曲线不够贴合(*1)
 - 2.6.1 可能是自整定的超调抑制参数设置过大,可每次减少30测试,该参数过小可能会造

成超调,需要选择合适参数。

- 2. 6. 2 一般自整定后设置的超调抑制参数超过 350, 且设置温升速度又快,这时候也会出线贴合度较差,这种情况可调整温度探头位置,让其离加热源更近些,可提升温升反应速度。
- 2.6.3 设定的程序曲线不符合被控制系统的特性,当系统升温很慢时,设置加热过快的程序曲线,系统就会一直加热,导致曲线贴合度不好。

(详细操作参见《温控仪 T24/T240 产品使用说明书 V1.1》第八章 8.1 菜单操作流程说明)

第三章 注意事项

- 自整定期间保证探头测温稳定及尽量避免按键操作而导致整定异常。
- ② 输出为继电器时,控制周期应在 4S 以上,减少继电器开关频率。
- ③ 温度控制效果跟加热系统有很大关系,加热器功率适中和测温稳定最好,加热过快或过慢都会导致控温异常。
- ④ 400°C以下控制温度,选用 PT100,精度更高。
- ⑤ 使用 4-20ma 输出连接调压设备时,注意加热设备在低压条件是否还在正常工作,否则会 出现控制异常。
- ⑥ 进行温度控制时,请间隔观察控温是否异常,以免出现探头损坏,加热设备损坏,参数设置异常而导致的一直加热控温异常。
- ⑦ 进行 PID 自整定时, SV 设定温度不能修改, 否则会自整定失败。
- 8 进行 PID 自整定时, 比例, 积分, 微分, 无法修改。
- (9) 启动 PID 自整定后,再给加热设备通电。防止未开始整定,温度已经开始提升。
- (10) 使用 K 型探头时,注意环境温度要在较稳定状态。否则可能会导致自整定失败。
- (1) 防止误操作,程序模式下不能自整定,要将模式改为自动模式,才可自整定。
- ② 程序模式启动时是不能设置每一段的 SV 和 time 的, 把控制位设置为复位后, 即可以改变程序。(*1)

(注意: *1: 代表 T240 特有: *2: 代表 T24 特有;)